Biosensors based on nanomechanical systems.
نویسندگان
چکیده
The advances in micro- and nanofabrication technologies enable the preparation of increasingly smaller mechanical transducers capable of detecting the forces, motion, mechanical properties and masses that emerge in biomolecular interactions and fundamental biological processes. Thus, biosensors based on nanomechanical systems have gained considerable relevance in the last decade. This review provides insight into the mechanical phenomena that occur in suspended mechanical structures when either biological adsorption or interactions take place on their surface. This review guides the reader through the parameters that change as a consequence of biomolecular adsorption: mass, surface stress, effective Young's modulus and viscoelasticity. The mathematical background needed to correctly interpret the output signals from nanomechanical biosensors is also outlined here. Other practical issues reviewed are the immobilization of biomolecular receptors on the surface of nanomechanical systems and methods to attain that in large arrays of sensors. We then describe some relevant realizations of biosensor devices based on nanomechanical systems that harness some of the mechanical effects cited above. We finally discuss the intrinsic detection limits of the devices and the limitation that arises from non-specific adsorption.
منابع مشابه
Microfabrication and nanomechanical characterization of polymer microelectromechanical system for biological applications
Polymer microelectromechanical system MEMS devices are promising for biological applications such as development of biosensors and biomechanical devices. In order to develop polymer biological MEMS BioMEMS , polymer microfabrication techniques are required, and the nanomechanics studies, including measurement of the nanomechanical properties of the polymer materials, must be carried out. This a...
متن کاملA Highly Sensitive Microsystem Based on Nanomechanical Biosensors for Genomics Applications
A new DNA biosensor microsystem based on nanomechanical transducers is being developed. The microsystem comprises an array of 20 cantilevers, a microfludic system for delivery of the samples, an array of 20 lasers (VSCELs) and chips with the photodetectors and the CMOS circuitry for signal acquisition and conditioning. Robust immobilization procedures for the oligonucleotides receptor sequences...
متن کاملNanomechanical biosensors: a new sensing tool
Biosensors based on microcantilevers have become a promising tool for directly detecting biomolecular interactions with great accuracy. Microcantilevers translate molecular recognition of biomolecules into nanomechanical motion that is commonly coupled to an optical or piezoresistive read-out detector system. Biosensors based on cantilevers are a good example of how nanotechnology and biotechno...
متن کاملChallenges for nanomechanical sensors in biological detection.
Nanomechanical biosensing relies on changes in the movement and deformation of micro- and nanoscale objects when they interact with biomolecules and other biological targets. This field of research has provided ever-increasing records in the sensitivity of label-free detection but it has not yet been established as a practical alternative for biological detection. We analyze here the latest adv...
متن کاملAtomic Force Microscopy as a Tool Applied to Nano/Biosensors
This review article discusses and documents the basic concepts and principles of nano/biosensors. More specifically, we comment on the use of Chemical Force Microscopy (CFM) to study various aspects of architectural and chemical design details of specific molecules and polymers and its influence on the control of chemical interactions between the Atomic Force Microscopy (AFM) tip and the sample...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical Society reviews
دوره 42 3 شماره
صفحات -
تاریخ انتشار 2013